Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 559
Filtrar
1.
J Biol Chem ; 299(12): 105403, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229399

RESUMO

We have investigated the kinetics of NAD+-dependent NADPH:ferredoxin oxidoreductase (NfnI), a bifurcating transhydrogenase that takes two electron pairs from NADPH to reduce two ferredoxins and one NAD+ through successive bifurcation events. NADPH reduction takes place at the bifurcating FAD of NfnI's large subunit, with high-potential electrons transferred to the [2Fe-2S] cluster and S-FADH of the small subunit, ultimately on to NAD+; low-potential electrons are transferred to two [4Fe-4S] clusters of the large subunit and on to ferredoxin. Reduction of NfnI by NADPH goes to completion only at higher pH, with a limiting kred of 36 ± 1.6 s-1 and apparent KdNADPH of 5 ± 1.2 µM. Reduction of one of the [4Fe-4S] clusters of NfnI occurs within a second, indicating that in the absence of NAD+, the system can bifurcate and generate low-potential electrons without NAD+. When enzyme is reduced by NADPH in the absence of NAD+ but the presence of ferredoxin, up to three equivalents of ferredoxin become reduced, although the reaction is considerably slower than seen during steady-state turnover. Bifurcation appears to be limited by transfer of the first, high-potential electron into the high-potential pathway. Ferredoxin reduction without NAD+ demonstrates that electron bifurcation is an intrinsic property of the bifurcating FAD and is not dependent on the simultaneous presence of NAD+ and ferredoxin. The tight coupling between NAD+ and ferredoxin reduction observed under multiple-turnover conditions is instead simply due to the need to remove reducing equivalents from the high-potential electron pathway under multiple-turnover conditions.


Assuntos
Proteínas Arqueais , Ferredoxinas , Oxirredutases , Pyrococcus furiosus , Ferredoxinas/metabolismo , Cinética , NAD/metabolismo , NADP/metabolismo , Oxirredução , Oxirredutases/metabolismo , Pyrococcus furiosus/enzimologia , Proteínas Arqueais/metabolismo
2.
Nucleic Acids Res ; 50(13): 7560-7569, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35819229

RESUMO

5'-Adenylated oligonucleotides (AppOligos) are widely used for single-stranded DNA/RNA ligation in next-generation sequencing (NGS) applications such as microRNA (miRNA) profiling. The ligation between an AppOligo adapter and target molecules (such as miRNA) no longer requires ATP, thereby minimizing potential self-ligations and simplifying library preparation procedures. AppOligos can be produced by chemical synthesis or enzymatic modification. However, adenylation via chemical synthesis is inefficient and expensive, while enzymatic modification requires pre-phosphorylated substrate and additional purification. Here we cloned and characterized the Pfu RNA ligase encoded by the PF0353 gene in the hyperthermophilic archaea Pyrococcus furiosus. We further engineered fusion enzymes containing both Pfu RNA ligase and T4 polynucleotide kinase. One fusion enzyme, 8H-AP, was thermostable and can directly catalyze 5'-OH-terminated DNA substrates to adenylated products. The newly discovered Pfu RNA ligase and the engineered fusion enzyme may be useful tools for applications using AppOligos.


Assuntos
Monofosfato de Adenosina/química , Técnicas Genéticas , MicroRNAs , Oligonucleotídeos/química , Polinucleotídeo 5'-Hidroxiquinase , DNA/química , DNA Ligases/metabolismo , DNA de Cadeia Simples , Polinucleotídeo 5'-Hidroxiquinase/genética , Pyrococcus furiosus/enzimologia , RNA Ligase (ATP)/metabolismo
3.
J Am Chem Soc ; 143(49): 20873-20883, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34846879

RESUMO

The membrane-bound hydrogenase (Mbh) is a redox-driven Na+/H+ transporter that employs the energy from hydrogen gas (H2) production to catalyze proton pumping and Na+/H+ exchange across cytoplasmic membranes of archaea. Despite a recently resolved structure of this ancient energy-transducing enzyme [Yu et al. Cell 2018, 173, 1636-1649], the molecular principles of its redox-driven ion-transport mechanism remain puzzling and of major interest for understanding bioenergetic principles of early cells. Here we use atomistic molecular dynamics (MD) simulations in combination with data clustering methods and quantum chemical calculations to probe principles underlying proton reduction as well as proton and sodium transport in Mbh from the hyperthermophilic archaeon Pyrococcus furiosus. We identify putative Na+ binding sites and proton pathways leading across the membrane and to the NiFe-active center as well as conformational changes that regulate ion uptake. We suggest that Na+ binding and protonation changes at a putative ion-binding site couple to proton transfer across the antiporter-like MbhH subunit by modulating the conformational state of a conserved ion pair at the subunit interface. Our findings illustrate conserved coupling principles within the complex I superfamily and provide functional insight into archaeal energy transduction mechanisms.


Assuntos
Proteínas Arqueais/química , Hidrogenase/química , Trocadores de Sódio-Hidrogênio/química , Proteínas Arqueais/metabolismo , Catálise , Domínio Catalítico , Hidrogenase/metabolismo , Transporte de Íons , Simulação de Dinâmica Molecular , Ligação Proteica , Prótons , Pyrococcus furiosus/enzimologia , Sódio/química , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Água/química , Água/metabolismo
4.
Biotechnol Lett ; 43(11): 2105-2110, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34532823

RESUMO

OBJECTIVE: With the widespread application of CRISPR/Cas9 gene editing technology, new methods are needed to screen mutants quickly and effectively. Here, we aimed to develop a simple and cost-effective method to screen CRISPR/Cas9-induced mutants. RESULT: We report a novel method to identify CRISPR/Cas9-induced mutants through a DNA-guided Argonaute nuclease derived from the archaeon Pyrococcus furiosus. We demonstrated that the Pyrococcus furiosus Argonaute (PfAgo)-based method could distinguish among biallelic mutants, monoallelic mutants and wild type (WT). Furthermore, this method was able to identify 1 bp indel mutations. CONCLUSION: The PfAgo-based method is simple to implement and can be applied to screen biallelic mutants and mosaic mutants generated by CRISPR-Cas9 or other kinds of gene editing tools.


Assuntos
Proteínas Argonautas , Sistemas CRISPR-Cas/genética , Edição de Genes , Mutação INDEL/genética , Animais , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , DNA/genética , Edição de Genes/economia , Edição de Genes/métodos , Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/genética
5.
Nucleic Acids Res ; 49(16): 9444-9458, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34387688

RESUMO

The ribonucleoprotein (RNP) form of archaeal RNase P comprises one catalytic RNA and five protein cofactors. To catalyze Mg2+-dependent cleavage of the 5' leader from pre-tRNAs, the catalytic (C) and specificity (S) domains of the RNase P RNA (RPR) cooperate to recognize different parts of the pre-tRNA. While ∼250-500 mM Mg2+ renders the archaeal RPR active without RNase P proteins (RPPs), addition of all RPPs lowers the Mg2+ requirement to ∼10-20 mM and improves the rate and fidelity of cleavage. To understand the Mg2+- and RPP-dependent structural changes that increase activity, we used pre-tRNA cleavage and ensemble FRET assays to characterize inter-domain interactions in Pyrococcus furiosus (Pfu) RPR, either alone or with RPPs ± pre-tRNA. Following splint ligation to doubly label the RPR (Cy3-RPRC domain and Cy5-RPRS domain), we used native mass spectrometry to verify the final product. We found that FRET correlates closely with activity, the Pfu RPR and RNase P holoenzyme (RPR + 5 RPPs) traverse different Mg2+-dependent paths to converge on similar functional states, and binding of the pre-tRNA by the holoenzyme influences Mg2+ cooperativity. Our findings highlight how Mg2+ and proteins in multi-subunit RNPs together favor RNA conformations in a dynamic ensemble for functional gains.


Assuntos
Archaea/enzimologia , Magnésio/metabolismo , RNA Arqueal/genética , Ribonuclease P/genética , Conformação de Ácido Nucleico/efeitos dos fármacos , Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/genética , Precursores de RNA/genética , RNA Arqueal/ultraestrutura , RNA Catalítico , Ribonuclease P/ultraestrutura
6.
Sci Rep ; 11(1): 11553, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078944

RESUMO

Salt-bridges play a key role in the thermostability of proteins adapted in stress environments whose intrinsic basis remains to be understood. We find that the higher hydrophilicity of PfP than that of HuP is due to the charged but not the polar residues. The primary role of these residues is to enhance the salt-bridges and their ME. Unlike HuP, PfP has made many changes in its intrinsic property to strengthen the salt-bridge. First, the desolvation energy is reduced by directing the salt-bridge towards the surface. Second, it has made bridge-energy more favorable by recruiting energetically advantageous partners with high helix-propensity among the six possible salt-bridge pairs. Third, ME-residues that perform intricate interactions have increased their energy contribution by making major changes in their binary properties. The use of salt-bridge partners as ME-residues, and ME-residues' overlapping usage, predominant in helices, and energetically favorable substitution are some of the favorable features of PfP compared to HuP. These changes in PfP reduce the unfavorable, increase the favorable ME-energy. Thus, the per salt-bridge stability of PfP is greater than that of HuP. Further, unfavorable target ME-residues can be identified whose mutation can increase the stability of salt-bridge. The study applies to other similar systems.


Assuntos
Temperatura Alta , Prolil Oligopeptidases/metabolismo , Pyrococcus furiosus/enzimologia , Estabilidade Enzimática , Interações Hidrofóbicas e Hidrofílicas , Prolil Oligopeptidases/química , Eletricidade Estática , Termodinâmica
7.
PLoS Comput Biol ; 17(6): e1009107, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34133419

RESUMO

We describe an approach for integrating distance restraints from Double Electron-Electron Resonance (DEER) spectroscopy into Rosetta with the purpose of modeling alternative protein conformations from an initial experimental structure. Fundamental to this approach is a multilateration algorithm that harnesses sets of interconnected spin label pairs to identify optimal rotamer ensembles at each residue that fit the DEER decay in the time domain. Benchmarked relative to data analysis packages, the algorithm yields comparable distance distributions with the advantage that fitting the DEER decay and rotamer ensemble optimization are coupled. We demonstrate this approach by modeling the protonation-dependent transition of the multidrug transporter PfMATE to an inward facing conformation with a deviation to the experimental structure of less than 2Å Cα RMSD. By decreasing spin label rotamer entropy, this approach engenders more accurate Rosetta models that are also more closely clustered, thus setting the stage for more robust modeling of protein conformational changes.


Assuntos
Algoritmos , Modelos Moleculares , Conformação Proteica , Bacteriófago T4/enzimologia , Biologia Computacional , Espectroscopia de Ressonância de Spin Eletrônica/estatística & dados numéricos , Metionina Adenosiltransferase/química , Simulação de Dinâmica Molecular/estatística & dados numéricos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Muramidase/química , Pyrococcus furiosus/enzimologia , Software , Marcadores de Spin
8.
J Microbiol Biotechnol ; 31(4): 570-583, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33753701

RESUMO

Pyrococcus furiosus α-amylase can hydrolyze α-1,4 linkages in starch and related carbohydrates under hyperthermophilic condition (~ 100°C), showing great potential in a wide range of industrial applications, while its relatively low productivity from heterologous hosts has limited the industrial applications. Bacillus subtilis, a gram-positive bacterium, has been widely used in industrial production for its non-pathogenic and powerful secretory characteristics. This study was conducted to increase production of P. furiosus α-amylase in B. subtilis through three strategies. Initial experiments showed that co-expression of P. furiosus molecular chaperone peptidyl-prolyl cis-trans isomerase through genomic integration mode, using a CRISPR/Cas9 system, increased soluble amylase production. Therefore, considering that native P. furiosus α-amylase is produced within a hyperthermophilic environment and is highly thermostable, heat treatment of intact culture at 90°C for 15 min was performed, thereby greatly increasing soluble amylase production. After optimization of the culture conditions (nitrogen source, carbon source, metal ion, temperature and pH), experiments in a 3-L fermenter yielded a soluble activity of 3,806.7 U/ml, which was 3.3- and 28.2-fold those of a control without heat treatment (1,155.1 U/ml) and an empty expression vector control (135.1 U/ml), respectively. This represents the highest P. furiosus α-amylase production reported to date and should promote innovation in the starch liquefaction process and related industrial productions. Meanwhile, heat treatment, which may promote folding of aggregated P. furiosus α-amylase into a soluble, active form through the transfer of kinetic energy, may be of general benefit when producing proteins from thermophilic archaea.


Assuntos
Bacillus subtilis/metabolismo , Fermentação , Chaperonas Moleculares , Pyrococcus furiosus/enzimologia , alfa-Amilases/biossíntese , Temperatura Alta , Microbiologia Industrial , Amido/metabolismo
9.
Talanta ; 227: 122154, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33714462

RESUMO

Infectious diseases caused by viruses such as SARS-CoV-2 and HPV have greatly endangered human health. The nucleic acid detection is essential for the early diagnosis of diseases. Here, we propose a method called PLCR (PfAgo coupled with modified Ligase Chain Reaction for nucleic acid detection) which utilizes PfAgo to only use DNA guides longer than 14-mer to specifically cleave DNA and LCR to precisely distinguish single-base mismatch. PLCR can detect DNA or RNA without PCR at attomolar sensitivities, distinguish single base mutation between the genome of wild type SARS-CoV-2 and its mutant spike D614G, effectively distinguish the novel coronavirus from other coronaviruses and finally achieve multiplexed detection in 70 min. Additionally, LCR products can be directly used as DNA guides without additional input guides to simplify primer design. With desirable sensitivity, specificity and simplicity, the method can be extended for detecting other pathogenic microorganisms.


Assuntos
Proteínas Argonautas/química , DNA Viral/análise , Reação em Cadeia da Ligase/métodos , Pyrococcus furiosus/enzimologia , RNA Viral/análise , Alphapapillomavirus/química , Alphapapillomavirus/isolamento & purificação , COVID-19/diagnóstico , DNA Viral/química , Humanos , Limite de Detecção , Mutação , Infecções por Papillomavirus/diagnóstico , RNA Viral/química , SARS-CoV-2/química , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus/genética
10.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33658373

RESUMO

Spontaneous deamination of DNA cytosine and adenine into uracil and hypoxanthine, respectively, causes C to T and A to G transition mutations if left unrepaired. Endonuclease Q (EndoQ) initiates the repair of these premutagenic DNA lesions in prokaryotes by cleaving the phosphodiester backbone 5' of either uracil or hypoxanthine bases or an apurinic/apyrimidinic (AP) lesion generated by the excision of these damaged bases. To understand how EndoQ achieves selectivity toward these structurally diverse substrates without cleaving undamaged DNA, we determined the crystal structures of Pyrococcus furiosus EndoQ bound to DNA substrates containing uracil, hypoxanthine, or an AP lesion. The structures show that substrate engagement by EndoQ depends both on a highly distorted conformation of the DNA backbone, in which the target nucleotide is extruded out of the helix, and direct hydrogen bonds with the deaminated bases. A concerted swing motion of the zinc-binding and C-terminal helical domains of EndoQ toward its catalytic domain allows the enzyme to clamp down on a sharply bent DNA substrate, shaping a deep active-site pocket that accommodates the extruded deaminated base. Within this pocket, uracil and hypoxanthine bases interact with distinct sets of amino acid residues, with positioning mediated by an essential magnesium ion. The EndoQ-DNA complex structures reveal a unique mode of damaged DNA recognition and provide mechanistic insights into the initial step of DNA damage repair by the alternative excision repair pathway. Furthermore, we demonstrate that the unique activity of EndoQ is useful for studying DNA deamination and repair in mammalian systems.


Assuntos
Proteínas Arqueais/química , DNA Arqueal/química , Endonucleases/química , Pyrococcus furiosus/enzimologia , Proteínas Arqueais/genética , Domínio Catalítico , DNA Arqueal/genética , Desaminação , Endonucleases/genética , Pyrococcus furiosus/genética
11.
Protein Expr Purif ; 182: 105843, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33631310

RESUMO

Commercial applications of ß-glucosidase (BGL) demands its purity and availability on a large scale. In the present study, we aim to optimize the expression and secretion of a thermostable BGL from Pyrococcus furiosus (PfuBGL) in B. subtilis strain RIK1285. Initial studies with base strain BV002 harboring aprE signal peptide (aprESP) showed PfuBGL yield of 0.743 ± 0.19 pNP U/ml only. A library of 173 different homologous SPs from B. subtilis 168 genome was fused with target PfuBGL gene (PF0073) in pBE-S vector and extracellularly expressed in RIK1285 strain to identify optimal SP for PfuBGL secretion. High-throughput screening of the resulting SP library for BGL activity with a synthetic substrate followed by systematic scaling of the clones yielded a gene construct with CitHSP reporting a sixteen fold enhancement of PfuBGL secretion in comparison to base strain. Batch fermentation (7.5 L scale) PfuBGL yield of the BV003 strain with CitHSP-PF0073 fusion was observed to be 12.08 ± 0.21 pNP U/ml with specific activity of 35.52 ± 0.53 U/mg. Thus, the study represents report on the secretory expression of thermostable PfuBGL using B. subtilis as a host organism and demonstrating its high potential for industrial production of any protein/enzyme.


Assuntos
Proteínas Arqueais , Bacillus subtilis , Sinais Direcionadores de Proteínas/genética , Pyrococcus furiosus , beta-Glucosidase , Proteínas Arqueais/biossíntese , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/isolamento & purificação , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , beta-Glucosidase/biossíntese , beta-Glucosidase/química , beta-Glucosidase/genética , beta-Glucosidase/isolamento & purificação
12.
Sci Rep ; 10(1): 21702, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303914

RESUMO

It remains undeciphered how thermophilic enzymes display enhanced stability at elevated temperatures. Taking L-asparaginase from P. furiosus (PfA) as an example, we combined scattering shapes deduced from small-angle X-ray scattering (SAXS) data at increased temperatures with symmetry mates from crystallographic structures to find that heating caused end-to-end association. The small contact point of self-binding appeared to be enabled by a terminal short ß-strand in N-terminal domain, Leu179-Val-Val-Asn182 (LVVN). Interestingly, deletion of this strand led to a defunct enzyme, whereas suplementation of the peptide LVVN to the defunct enzyme restored structural frameworkwith mesophile-type functionality. Crystal structure of the peptide-bound defunct enzyme showed that one peptide ispresent in the same coordinates as in original enzyme, explaining gain-of lost function. A second peptide was seen bound to the protein at a different location suggesting its possible role in substrate-free molecular-association. Overall, we show that the heating induced self-assembly of native shapes of PfA led to an apparent super-stable assembly.


Assuntos
Asparaginase/metabolismo , Temperatura Alta , Pyrococcus furiosus/enzimologia , Sequência de Aminoácidos , Asparaginase/química , Cristalografia por Raios X , Estabilidade Enzimática , Temperatura Alta/efeitos adversos , Conformação Proteica em Folha beta , Desnaturação Proteica , Domínios Proteicos
13.
Nat Commun ; 11(1): 5953, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230146

RESUMO

Modern day aerobic respiration in mitochondria involving complex I converts redox energy into chemical energy and likely evolved from a simple anaerobic system now represented by hydrogen gas-evolving hydrogenase (MBH) where protons are the terminal electron acceptor. Here we present the cryo-EM structure of an early ancestor in the evolution of complex I, the elemental sulfur (S0)-reducing reductase MBS. Three highly conserved protein loops linking cytoplasmic and membrane domains enable scalable energy conversion in all three complexes. MBS contains two proton pumps compared to one in MBH and likely conserves twice the energy. The structure also reveals evolutionary adaptations of MBH that enabled S0 reduction by MBS catalyzed by a site-differentiated iron-sulfur cluster without participation of protons or amino acid residues. This is the simplest mechanism proposed for reduction of inorganic or organic disulfides. It is of fundamental significance in the iron and sulfur-rich volcanic environments of early earth and possibly the origin of life. MBS provides a new perspective on the evolution of modern-day respiratory complexes and of catalysis by biological iron-sulfur clusters.


Assuntos
Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Enxofre/metabolismo , Catálise , Domínio Catalítico , Microscopia Crioeletrônica , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Hidrogenase/química , Hidrogenase/metabolismo , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/metabolismo , Modelos Moleculares , Origem da Vida , Oxirredução , Bombas de Próton/química , Pyrococcus furiosus/química , Pyrococcus furiosus/enzimologia , Trocadores de Sódio-Hidrogênio/química
14.
J Ind Microbiol Biotechnol ; 47(8): 585-597, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32783103

RESUMO

Caldicellulosiruptor bescii is the most thermophilic cellulolytic organism yet identified (Topt 78 °C). It grows on untreated plant biomass and has an established genetic system thereby making it a promising microbial platform for lignocellulose conversion to bio-products. Here, we investigated the ability of engineered C. bescii to generate alcohols from carboxylic acids. Expression of aldehyde ferredoxin oxidoreductase (aor from Pyrococcus furiosus) and alcohol dehydrogenase (adhA from Thermoanaerobacter sp. X514) enabled C. bescii to generate ethanol from crystalline cellulose and from biomass by reducing the acetate produced by fermentation. Deletion of lactate dehydrogenase in a strain expressing the AOR-Adh pathway increased ethanol production. Engineered strains also converted exogenously supplied organic acids (isobutyrate and n-caproate) to the corresponding alcohol (isobutanol and hexanol) using both crystalline cellulose and switchgrass as sources of reductant for alcohol production. This is the first instance of an acid to alcohol conversion pathway in a cellulolytic microbe.


Assuntos
Caldicellulosiruptor/genética , Ácidos Carboxílicos/metabolismo , Etanol/metabolismo , Lignina/metabolismo , Microrganismos Geneticamente Modificados , Panicum/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Biocombustíveis/análise , Biomassa , Fermentação , Oxirredução , Panicum/microbiologia , Pyrococcus furiosus/enzimologia , Thermoanaerobacter/enzimologia
15.
Appl Environ Microbiol ; 86(21)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32859593

RESUMO

Arsenate is a notorious toxicant that is known to disrupt multiple biochemical pathways. Many microorganisms have developed mechanisms to detoxify arsenate using the ArsC-type arsenate reductase, and some even use arsenate as a terminal electron acceptor for respiration involving arsenate respiratory reductase (Arr). ArsC-type reductases have been studied extensively, but the phylogenetically unrelated Arr system is less investigated and has not been characterized from Archaea Here, we heterologously expressed the genes encoding Arr from the crenarchaeon Pyrobaculum aerophilum in the euryarchaeon Pyrococcus furiosus, both of which grow optimally near 100°C. Recombinant P. furiosus was grown on molybdenum (Mo)- or tungsten (W)-containing medium, and two types of recombinant Arr enzymes were purified, one containing Mo (Arr-Mo) and one containing W (Arr-W). Purified Arr-Mo had a 140-fold higher specific activity in arsenate [As(V)] reduction than Arr-W, and Arr-Mo also reduced arsenite [As(III)]. The P. furiosus strain expressing Arr-Mo (the Arr strain) was able to use arsenate as a terminal electron acceptor during growth on peptides. In addition, the Arr strain had increased tolerance compared to that of the parent strain to arsenate and also, surprisingly, to arsenite. Compared to the parent, the Arr strain accumulated intracellularly almost an order of magnitude more arsenic when cells were grown in the presence of arsenite. X-ray absorption spectroscopy (XAS) results suggest that the Arr strain of P. furiosus improves its tolerance to arsenite by increasing production of less-toxic arsenate and nontoxic methylated arsenicals compared to that by the parent.IMPORTANCE Arsenate respiratory reductases (Arr) are much less characterized than the detoxifying arsenate reductase system. The heterologous expression and characterization of an Arr from Pyrobaculum aerophilum in Pyrococcus furiosus provides new insights into the function of this enzyme. From in vivo studies, production of Arr not only enabled P. furiosus to use arsenate [As(V)] as a terminal electron acceptor, it also provided the organism with a higher resistance to arsenate and also, surprisingly, to arsenite [As(III)]. In contrast to the tungsten-containing oxidoreductase enzymes natively produced by P. furiosus, recombinant P. aerophilum Arr was much more active with molybdenum than with tungsten. It is also, to our knowledge, the only characterized Arr to be active with both molybdenum and tungsten in the active site.


Assuntos
Proteínas Arqueais/genética , Arseniato Redutases/genética , Regulação da Expressão Gênica em Archaea , Pyrococcus furiosus/genética , Thermoproteaceae/genética , Proteínas Arqueais/metabolismo , Arseniato Redutases/metabolismo , Arsênio/metabolismo , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/metabolismo
16.
Microb Cell Fact ; 19(1): 100, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393258

RESUMO

BACKGROUND: The secretory production of recombinant proteins in yeast simplifies isolation and purification but also faces possible complications due to the complexity of the secretory pathway. Therefore, correct folding, maturation and intracellular transport of the recombinant proteins are important processing steps with a higher effort needed for complex and large proteins. The aim of this study was to elucidate the secretion potential of Yarrowia lipolytica for low and high molecular weight ß-glycosidases in a comparative cultivation approach. RESULTS: A low sized ß-glucosidase from Pyrococcus furiosus (CelB; 55 kDa) and a large sized ß-galactosidase isolated from the metagenome (M1; 120 kDa) were integrated into the acid extracellular protease locus using the CRISPR-Cas9 system to investigate the size dependent secretion of heterologous proteins in Y. lipolytica PO1f. The recombinant strains were cultivated in the bioreactor for 78 h and the extra- and intracellular enzyme activities were determined. The secretion of CelB resulted in an extracellular volumetric activity of 187.5 µkatoNPGal/Lmedium, while a volumetric activity of 2.98 µkatoNPGal/Lmedium was measured during the M1 production. However, when the amount of functional intra- and extracellular enzyme was investigated, the high molecular weight M1 (85%) was secreted more efficiently than CelB (27%). Real-time PCR experiments showed a linear correlation between the transcript level and extracellular activity for CelB, while a disproportional high mRNA level was observed regarding M1. Interestingly, mass spectrometry data revealed the unexpected secretion of two endogenous intracellular glycolytic enzymes, which is reported for the first time for Y. lipolytica. CONCLUSION: The results of this study provide deeper insights into the secretion potential of Y. lipolytica. A secretion limitation for the low-size CelB was observed, while the large size M1 enzyme was produced in lower amounts but was secreted efficiently. It was shown for the first time that Y. lipolytica is a promising host for the secretion of heterologous high molecular weight proteins (> 100 kDa), although the total secreted amount has to be increased further.


Assuntos
Proteínas Arqueais/biossíntese , Glucosidases/biossíntese , Yarrowia/metabolismo , Proteínas Arqueais/classificação , Reatores Biológicos , Glucosidases/classificação , Peso Molecular , Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/genética , Proteínas Recombinantes/biossíntese
17.
Org Biomol Chem ; 18(22): 4189-4192, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32452506

RESUMO

Isotopologs are powerful tools for investigating biological systems. We report a biosynthetic-cascade synthesis of Trp isotopologs starting from indole, glycine, and formaldehyde using the enzymes l-threonine aldolase and an engineered ß-subunit of tryptophan synthase. This modular route to Trp isotopologs is simple and inexpensive, enabling facile access to these compounds.


Assuntos
Glicina Hidroximetiltransferase/metabolismo , Triptofano Sintase/metabolismo , Triptofano/biossíntese , Isótopos de Carbono , Deutério , Pyrococcus furiosus/enzimologia , Triptofano/química
18.
Int J Biol Macromol ; 156: 812-828, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32311402

RESUMO

L-Asparaginase (L-ASNase EC 3.5.1.1) is considered as an important biopharmaceutical drug enzyme in the treatment of childhood acute lymphoblastic leukemia (ALL). In the present study, Pyrococcus furiosus L-ASNase gene was cloned into pET26b (+), expressed in E. coli BL21(DE3) pLysS, and purified to homogeneity using Ni2+ chelated Fast Flow Sepharose resin with 5.7 purification fold and 23.9% recovery. The purified enzyme exhibited a molecular weight of ~33,660 Da on SDS-PAGE and showed maximal activity at 50 °C and pH 8.0. It retained 98.3% and 60.7% initial activity after 60 min at 37 °C and 50 °C, respectively. The recombinant enzyme showed highest substrate specificity towards L-ASNase substrate, while no detectable specificity was observed for l-glutamine, urea, and acrylamide at 10 mM concentration. The Km and Vmax of the purified recombinant enzyme as calculated using Lineweaver-Burk plot were determined to be 1.623 mM and 105 µmol min-1 mg-1, respectively. Human leukemia cell line THP-1 treated with recombinant L-ASNase showed significant morphological changes, and the IC50 of the purified enzyme was found to be 0.8 IU. Moreover, the purified recombinant L-ASNase induced cytotoxic effects on lung adenocarcinoma A549 and colorectal adenocarcinoma Caco-2 cell lines with IC50 of 1.78 IU and 30 IU, respectively.


Assuntos
Asparaginase/química , Asparaginase/farmacologia , Pyrococcus furiosus/enzimologia , Proteínas Recombinantes , Sequência de Aminoácidos , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Asparaginase/genética , Asparaginase/isolamento & purificação , Sequência de Bases , Células CACO-2 , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Expressão Gênica , Hemólise , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Pyrococcus furiosus/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Especificidade por Substrato
19.
Nat Commun ; 11(1): 1742, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32269230

RESUMO

Synthetic DNA-based data storage systems have received significant attention due to the promise of ultrahigh storage density and long-term stability. However, all known platforms suffer from high cost, read-write latency and error-rates that render them noncompetitive with modern storage devices. One means to avoid the above problems is using readily available native DNA. As the sequence content of native DNA is fixed, one can modify the topology instead to encode information. Here, we introduce DNA punch cards, a macromolecular storage mechanism in which data is written in the form of nicks at predetermined positions on the backbone of native double-stranded DNA. The platform accommodates parallel nicking on orthogonal DNA fragments and enzymatic toehold creation that enables single-bit random-access and in-memory computations. We use Pyrococcus furiosus Argonaute to punch files into the PCR products of Escherichia coli genomic DNA and accurately reconstruct the encoded data through high-throughput sequencing and read alignment.


Assuntos
Proteínas Argonautas/metabolismo , DNA/genética , Análise de Sequência de DNA , Sequência de Bases , Pyrococcus furiosus/enzimologia
20.
Nucleic Acids Res ; 48(8): 4418-4434, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32198888

RESUMO

Type III CRISPR-Cas prokaryotic immune systems provide anti-viral and anti-plasmid immunity via a dual mechanism of RNA and DNA destruction. Upon target RNA interaction, Type III crRNP effector complexes become activated to cleave both target RNA (via Cas7) and target DNA (via Cas10). Moreover, trans-acting endoribonucleases, Csx1 or Csm6, can promote the Type III immune response by destroying both invader and host RNAs. Here, we characterize how the RNase and DNase activities associated with Type III-B immunity in Pyrococcus furiosus (Pfu) are regulated by target RNA features and second messenger signaling events. In vivo mutational analyses reveal that either the DNase activity of Cas10 or the RNase activity of Csx1 can effectively direct successful anti-plasmid immunity. Biochemical analyses confirmed that the Cas10 Palm domains convert ATP into cyclic oligoadenylate (cOA) compounds that activate the ribonuclease activity of Pfu Csx1. Furthermore, we show that the HEPN domain of the adenosine-specific endoribonuclease, Pfu Csx1, degrades cOA signaling molecules to provide an auto-inhibitory off-switch of Csx1 activation. Activation of both the DNase and cOA generation activities require target RNA binding and recognition of distinct target RNA 3' protospacer flanking sequences. Our results highlight the complex regulatory mechanisms controlling Type III CRISPR immunity.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Desoxirribonucleases/metabolismo , Endorribonucleases/metabolismo , Pyrococcus furiosus/enzimologia , Proteínas Arqueais/química , Domínio Catalítico , Endorribonucleases/química , Plasmídeos , Domínios Proteicos , Pyrococcus furiosus/genética , Pyrococcus furiosus/imunologia , Pyrococcus furiosus/metabolismo , Ribonucleoproteínas/metabolismo , Sistemas do Segundo Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...